Functional alterations of human exonuclease 1 mutants identified in atypical hereditary nonpolyposis colorectal cancer syndrome.

نویسندگان

  • Xuemin Sun
  • Li Zheng
  • Binghui Shen
چکیده

Hereditary Nonpolyposis Colorectal Cancer (HNPCC) is a genetically heterogeneous disorder caused by germ-line mutations in one of several DNA mismatch repair (MMR) genes, most commonly in hMSH2 and hMLH1. Human exonuclease 1 (hExo1) possesses both 5'exonuclease and flap endonuclease activities and plays a role in DNA repair, recombination, and replication. The enzyme interacts with MMR proteins, hMsh2, hMlh1, and hMsh3. Recently, eight missense mutations in hEXO1 were identified in atypical HNPCC patients, who have been screened to be negative for hMSH2, hMLH1, and hMSH6 mutations. To address the question of whether these mutations cause susceptibility to HNPCC, in vitro nuclease activity and protein-protein interaction assays were performed in this study. We found that two mutants, E109K and L410R, lost their exonuclease activities while retaining their capacity to bind to the DNA substrate. Three other mutants, P640S, G759E, and P770L, displayed a reduced capacity to interact with hMsh2. The combination of these three point mutations leads to the binding capacity with hMsh2 to nearly zero. Evidence made available in this study sheds light on the pathogenesis of HNPCC, perhaps initiated by an additional MMR gene, hEXO1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hereditary Nonpolyposis Colorectal Cancer (HNPCC)/Lynch Syndrome: Surveillance and Diagnostic strategies

Introduction: Hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) is an autosomal dominant genetic disease. The disease is caused by a mutation in one of four genes of the DNA mismatch repair system and increases the risk for various cancers, especially the uterine and colon cancers. The prevalence of this disease in the general population is about 1 in 500 and it causes about 2-3...

متن کامل

Is hEXO1 a cancer predisposing gene?

Introduction Changes in the efficiency of DNA repair and recombination activities can cause predisposition to cancer. The finding that hereditary nonpolyposis colorectal cancer (HNPCC) families frequently harbor mutations in DNA mismatch repair (MMR) genes has generated widespread interest in this research area (1-5). At the time of writing, germ line mutations in at least four genes, hMSH2 , h...

متن کامل

The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer.

Germline mutations in two human mismatch repair (MMR) genes, hMSH2 and hMLH1, appear to account for approximately 70% of the common cancer susceptibility syndrome hereditary nonpolyposis colorectal cancer (HNPCC). Although the hMLH1 protein has been found to copurify with another MMR protein hPMS2 as a heterodimer, their function in MMR is unknown. In this study, we have identified the physical...

متن کامل

Lynch Syndrome-associated Mutations in MSH2 Alter DNA Repair and Checkpoint Response Functions In Vivo

The DNA mismatch repair (MMR) pathway is essential in maintaining genomic stability through its role in DNA repair and the checkpoint response. Loss of DNA MMR underlies the hereditary cancer disease Lynch Syndrome (LS). Germline mutations in MSH2 account for approximately 40% of LS patients and of these, 18% are missense variants. One important clinical challenge has been discriminating betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 62 21  شماره 

صفحات  -

تاریخ انتشار 2002